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Often, trying to describe how atomic interactions in a structure come to manifest themselves 
macroscopically is tedious if not impossible when large numbers of molecules or atoms are 
being considered. One way to more easily approximate the expected behavior of a large system 
of particles, such as magnetic dipoles, is to consider how the “mean field” produced by 
neighboring particles near a single particle affects it. In magnetic systems, there is an 
electromagnetic exchange between individual dipoles that extends only negligibly beyond the 
other dipoles immediately adjacent to them. By “tagging” an individual dipole in a tetragonal 
crystal lattice of ferromagnetic dipoles and then “freezing” the dipoles immediately near it, the 
mean field produced by the frozen dipoles can be calculated, and the net effect of the mean 
field on the tagged dipole can be seen. In the case of ferromagnetism (and all magnetic 
systems), the magnetization and orientations of dipoles are dependent on temperature. To see 
this, Nd2Fe14B  magnets were cooled with liquid nitrogen and allowed to warm back up to room 
temperature while the strength of their magnetic fields were measured at a constant distance. 
The observed field strengths are then compared with theoretical results produced from the 
mean field approximation.  
 
 

I. Mean Field Theories 
The behaviors of many- bodied systems of 

interacting particles are difficult to model as 

the number of particles being considered 

increases. For example, the interactions of two 

or three magnetic dipoles are easy enough to 

model directly, but trying to model real- world 

magnets with many orders of magnitude of 

particles becomes arduous. To resolve this 

problem, a mean field theoretic approach is 

taken to consider only the interactions of a 

single dipole with the dipoles immediately 

surrounding it, and generalizing this to the 

system as a whole
i
.  

 The simplest of mean field theories are 

one- dimensional, such as the one- 

dimensional Ising model, in which a “string” 

of dipoles are considered; with one dipole 

being tagged and looking at the way the 

dipoles on either side of it affect its behavior. 

As the dimensionality of the system being 

considered increases, higher fidelity is reached 

to predict the behavior of the dipole being 

observed.  

 One application of mean field theory is 

to predict the temperature dependence of the 

magnetization in a ferromagnet. As 

ferromagnets are cooled their magnetic 

dipoles collapse into an aligned state that is 

energetically favorable, thus increasing the 

overall magnetization and field strength of the 

magnet. As a corollary to this, there exists a 

critical, or Curie, temperature above which a 

magnet loses all spontaneous magnetization 

and ceases to have a net magnetic moment. By 

taking into account the thermal energy and 

magnetic interactions of a system, the 

magnetic behavior of the system can be found. 

By treating individual crystals within the 

magnet as individual dipoles, a superposition 

principle is used to predict the behavior of the 

magnet as a whole when the total number of 

dipoles is known.  

 

 



II. Theoretical considerations 

The average spin alignment of a single 

dipole in a magnetic field is calculated as 
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 For a real magnetic system, such as a 

Nd2Fe14B magnet, the interactions a single 

dipole has with the six dipoles surrounding it 

are considered. In this case, a single tetragonal 

crystal, rather than individual atoms within the 

crystalline structure, will be considered a 

single dipole. If the material is immersed in an 

external magnetic field, the energy of the 

system is given by 
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where J is a coupling constant used to describe 

the exchange interaction between two dipoles, 

   is the tagged dipole being observed,    are 

the surrounding dipoles,   is the magnetic 

dipole moment and H is the applied external 

field. Since individual crystals, rather than 

individual atoms, are being treated as single 

dipoles, the exchange interaction and 

magnetic dipole moment is the same for all 

dipoles.  

Equation (2) can be rewritten as 
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which suggests that the term in parenthesis has 

the form of a magnetic field given by  
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The effective field of the surrounding 

dipoles on the tagged dipole is given by the 

average magnetization of the   nearest 

neighbors. To make an approximation for a 

ferromagnet, the external field is set equal to 

zero, and the magnetic field in (1) is given by 

     to get  
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The subscript in (1) has been dropped since, 

after the system has come to equilibrium, the 

average spin of the tagged dipole will take on 

the same value as the average spin of the 

neighboring dipoles
ii
. 

The magnetization of a system is 

defined as     〈 〉 and the saturation 

magnetization is defined as      , since at 

saturation, all dipoles in the system will have 

〈 〉   . By noting that the average spin 

alignment is given by the ratio of the 

magnetization of the system to its saturation 

magnetization, and that the Curie temperature 

can be defined as 
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Equation (5) becomes 
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Equation (7) is transcendental and can be 

solved graphically by plotting the left side 

ande right sides as functions of    ⁄  , and 

finding where they intersect. When the ratio 

   ⁄    , there is only one solution to (7) at 

   ⁄  0 suggesting that once the 

temperature of  the system is greater than or 

equal to the Curie temperature, the thermal 

energy of the system overwhelms the 

magnetic interactions between dipoles, so the 

spontaneous magnetization in the system 

becomes zero. Once the temperature drops 

below the Curie temperature, magnetic 

interactions between dipoles cause 

spontaneous magnetization in the system to 

occur. Below the Curie temperature, there are 

three solutions to (7): one at    ⁄  0 , and 

two others that are equal and opposite to each 

other (since the system has no preference 

toward being spin up or spin down), which 

indicate the spontaneous  magnetization of the 

system at a given temperature. Sample 

solutions to (7) are given in figure 1.  

 



 
Figure 1 Solutions to (7) given by intersections the linear 

curve of the left side of (7) has with the hyperbolic tangent 

on the right side of (7). For temperatures below the Curie 

temperature, there are three solutions to (7), which 

indicate that spontaneous magnetization has occurred 

within the system. 

 However, (7) can be manipulated by 

recalling the definition of the hyperbolic 

tangent to get equation (8)
iii
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 With equation (8) theoretical 

predictions for the magnetization of the 

system as a function of temperature can be 

made.  

 

III. Theoretical Predictions 

Neodymium rare earth magnets, which 

have the composition Nd2Fe14B, form 

tetragonal crystals in which the Nd atoms have 

uniaxial or easy axis anisotropy. Equation (8) 

is used to predict the behavior of a 

ferromagnetic system, as shown in figure 2. 

 
Figure 2 The normalized magnetization of a system is 

plotted as a function of the normalized temperature. 

Clearly as the normalized temperature reaches unity, the 

normalized spontaneous magnetization of the system goes 

to zero.  

The Curie temperature for this type of 

magnet is well documented as 583K, and, by 

finding the magnetic dipole moment of a 

single crystal multiplied by the number of 

crystals in the magnet, the saturation 

magnetization of the system tested is found, 

enabling real values to be calculated
iv

. 

Using the predicted magnetizations of the 

magnet at various temperatures, the expected 

magnetic field intensity can be calculated by 

first considering the relation 

      

where   is the scalar magnetic potential. 

Using the flux continuity law and knowing 

that   must satisfy Poisson’s equation, we 

find that 
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The magnetization of the magnet can be 

treated as being generated by surface bound 

currents, and so   is calculated as a surface 

integral based on the geometry of each 

magnet
v
. If the magnetic field of a magnet is 

measured directly above the axis of 

magnetization, only the z component of the 

magnetic field intensity needs to be calculated. 

For a disc shaped magnet, as depicted 

in figure 3, the z component of the magnetic 

field intensity is calculated as 
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Figure 3 The geometry of a Nd2Fe14B magnet tested. 

Equation (9) is based on the geometric configuration of 

the system to be tested. 



 By finding the magnetization of the system 

calculated in equation (8) and plugging these 

values into equation (9), theoretical 

predictions for the magnetic field of the disc 

shaped magnet in figure 2 as a function of 

temperature can be made. After converting 

magnetic field strength to magnetic flux 

density,  theoretical predictions for the 

magnetic flux density of the  Nd2Fe14B 

magnet  at a distance of z = 9.3 cm are given 

by figure 4. 

 
Figure 4 The theoretical magnetic flux density for a disc 

shaped magnet of radius 12.7 mm and height 9.53 mm a 

distance 9.3 cm above the magnet. 

IV. Experimental Results 

To observe the temperature dependence of 

the magnetic flux density described in figure 

3, a T-type thermocouple is attached to the top 

of the magnet, while the magnet is placed in a 

Styrofoam vessel that is then filled with liquid 

nitrogen. Once the magnet is cooled to 77K 

and the liquid nitrogen has boiled away, 

voltages induced in a Hall Effect probe by the 

magnetic field are recorded as the magnet 

slowly rises to room temperature.  

To make calculations simpler, the Hall 

Effect probe is placed directly above the 

magnet and voltages are measured to observe 

the radial strength of the magnetic field. 

A typical example of the magnetic field 

strength compared with theoretical predictions 

in a Nd2Fe14B magnet is shown in figure 5. 

 

 
Figure 5 The observed magnetic flux density in the disc 

shaped magnet compared with the theoretical curve over 

the temperature range from 77K to 281.9K. 

The observed magnetic flux density 

follows a trend similar to the theoretical 

predictions from 158.8K to 281.9K, when data 

recording stopped. Below 158.8K, the 

observed field strength in the magnet sharply 

declines, before starting to level out at 

126.4K. This is due to a spin reorientation 

transition in which the material changes from 

having a uniaxial anisotropy to an easy-cone 

anisotropy
vi

.   

Ultimately, mean field theory is unreliable 

for materials that experience a spin 

reorientation transition (SRT). However, at 

temperatures above the SRT, the data may still 

be compared with theoretical predictions for 

Nd2Fe14B. A Taylor polynomial is fitted to the 

observed data over the temperature range from 

158.8K to 281.9K and compared to theoretical 

predictions. There is found to be a 4.12% error 

in measurement of data, and the Taylor 

polynomial is plotted with error bars in figure 

6. 



 
Figure 6 The observed magnetic flux density at 

temperatures above the SRT temperature with error bars 

compared with the theoretical curve. 

At low temperatures from 158.8K up to 

about 219.5K, the theoretical curve lies within 

the region of error of observed data. This 

suggests that the mean field approximation 

produced reasonable results at low 

temperatures, although the discrepancy 

between the observed and theoretical curves 

gets larger as the temperature increases toward 

281.9K. Over the entire temperature range 

being analyzed, mean field theory predicted 

values an average of 4.35% higher than the 

observed magnetic field.  

 

V. Conclusions 

At temperatures below room temperature, 

the Mean Field Theory provided relatively 

accurate predictions for the magnetic flux 

density in the magnets being tested. However, 

once the temperature dropped below 158.8K, 

a spin reorientation transition took place 

within the material which caused the observed 

magnetic field to decrease rapidly. Therefore, 

since the mean field theory makes no account 

of this transition, it is unreliable as a model for 

the behavior of the Nd2Fe14B magnet below 

158.8K. However, for other magnetic 

materials such as Fe(III)O2  that do not 

experience this phenomena, the mean field 

theory may provide more accurate results.  

The spin reorientation transition is not 

thought to decrease the magnetic field by 

more than 14%, gradually decreasing as the 

temperature drops toward 0K. Taking this into 

account along with the mean field theory, 

qualitative predictions for the behavior of a 

Nd2Fe14B magnet can be made for cryogenic 

temperatures.  
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Appendix I- Theoretical Derivations 

 

Exercise 1: A single dipole in an external magnetic field 
 
Let the dipole be denoted by    , the magnetic dipole moment of     by  , and the external 
magnetic field by     . The dipole has two possible states: spin up (aligned with     ) or spin 
down (antiparallel to     ). These definitions are arbitrary and could be switched.  
The energy of the dipole is given by 
    𝝁       (1) 

Spin up:           (2) 
Spin down:           (3) 



where spin up is the lower energy state, since it is energetically favorable for the dipole to be 
aligned with the external field. Similarly, the spin down state is the higher energy state, since it 
is energetically unfavorable for the dipole to be aligned opposite of the external field.  
The probabilities of the dipole being spin up or spin down can be calculated with Boltzmann 
factors 
 
Probability of spin 
up 
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Probability of spin 
down 
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where k is Boltzmann’s constant, and T is the absolute temperature of the system. The average 
thermal state of our dipole, denoted by 〈  〉, can be found by summing the probabilities of 
states multiplied by each state.  
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Exercise 2: a 2D lattice of dipoles in an external magnetic field 

 
Consider the 2 dimensional lattice of dipoles as shown, in an 
external magnetic field. Let the dipole in the center be 
denoted by    and let the surrounding dipoles be denoted by 
the index    

The energy of the system is given by 
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where the first term on the right side of (9) is the sum of the 
interactions between    and each    dipole, and J is the 

average exchange interaction between the dipoles. The 
second term on the right side of (9) is the energy of    due to its interaction with the external 
magnetic field. If we take  
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We can note that the term in parenthesis can be written as an effective magnetic field felt by    
due to the    dipoles surrounding it. 
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Since every    is the same, we can drop the subscript and take their average multiplied by the 

number of them, n. 
 〈 〉  
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Then the energy of the system becomes 
                     (14) 

 
Exercise 3: The magnetization in an infinite 2D lattice of dipoles 
 
We don’t want to compute the interaction every dipole has with every other dipole near it in an 
infinite lattice, so we will instead implement the mean field theory using the results from 
example 2 and generalizing them for the entire system.  
 
If we look at a single dipole, if there is no external magnetic field, the only magnetic field it 
experiences is that produced by the other dipoles in the system. To make the mean field 
approximation, we will consider the effective field created by the nearest neighbors of a dipole 
and generalize it to the system as a whole.  
 
In exercise 1 we found from (8) that 
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In this example, the lattice is not in an external magnetic field, although each dipole 
experiences the effective magnetic field of the dipoles surrounding it, so we will replace      
with the      we found in (13). We will drop the subscript on〈  〉 since we have a 

ferromagnetic system, and this dipole will align itself to have the same value as 〈 〉. 
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We can calculate the magnetization of the system by noting that  
     〈 〉 (17) 
Furthermore, when all of the dipoles perfectly aligned with each other, the average spin of the 
dipoles will be one, and the magnetization will be at saturation. Let the magnetization 
saturation be given by  
       (18) 



It follows that the average spin alignment is the ratio of the magnetization to saturation 
magnetization; then  
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However we can define the Curie temperature as    
  

 ⁄  so (19) becomes 
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(20) is a transcendental equation and can be solved graphically. By plugging in various 
temperatures, we find that there are three solutions at some temperatures, two of which are 
equal and opposite, since the system has no preference of how we define spin up and spin 
down, and a third unstable solution at M=0. The M=0 solution is unstable because the system 
prefers to have some dipole alignment or spontaneous magnetization. However, above a 
certain temperature, we find that there is only one solution at M=0. This suggests the existence 
of a Curie temperature, below which the system has spontaneous magnetization. Above the 
Curie temperature, the energy of the system becomes great enough such that dipole alignment 
no longer becomes energetically favorable, and all spontaneous magnetization is lost. The first 
temperature at which the system only has one solution is the Curie temperature, and both 
sides of (20) have a slope of 1 at M=0 for this solution. However, by recalling the definition of 

tanh, we can rearrange (20) in the following way by letting     
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and rearranging algebraically to find that 
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Finally, we get (21) and can compare the reduced temperatures and magnetizations. One 
example of a solution curve looks like this, for a 3 dimensional tetragonal model, rather than a 
2D lattice.  



 
Figure 7 The normalized magnetization of the system as a function of the normalized temperature 

Since we can calculate the saturation magnetization from (18), and we know the Curie 
temperature, we can use (21) to then make predictions for the magnetization of a system based 
on temperature. From there we could also make predictions for the magnetic field strength of a 
magnet as a function of temperature.  
 

 
Appendix II- Elements of Statistical Physics 

Boltzmann Statistics are useful for calculating the probability of finding a system in any 

particular microstate when the system behaves quasistatically at thermal equilibrium. The 

microstates of a system are defined by the energy levels available to it, and there typically exist 

many degenerate states with the same energy. For example, when considering a single magnetic 

dipole with no external magnetic field applied to it, the dipole has two degenerate states, spin up 

and spin down, that have the same energy.  

 To find the probabilities of finding a system in a particular state, Boltzmann factors are 

compared to the partition function of a system, where 
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And the probability of finding a system in one particular state is given by 
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This is known as the Boltzmann distribution or canonical distribution, where E(s) is the energy 

of a particular state, k is Boltzmann’s constant and T is the absolute temperature of the system. 

Finding the partition function can be difficult, especially in large systems, and often the terms 

drop off quickly, so only the first few are calculated. Readers are encouraged to refer to Daniel 

Schroeder’s An Introduction to Thermal Physics, particularly sections 6.1-6.3. 
 
Appendix III- Calculation of the Magnetic Field Strength Using Surface Bound Currents 



 
Exercise 1: Calculating magnetic fields from a given magnetization.  
 
Perhaps we want to find the actual magnetic field produced as a result of the magnetizations we have 
predicted in an actual magnet. In (26) we found the normalized values we would expect for the 
magnetization in a system based on the normalized temperatures of the system. To predict an actual 
value for the magnetization, we can multiply the normalized magnetization by the saturation 
magnetization, and multiply the normalized temperatures by the Curie temperature. For a real system, 
such as a neodymium rare earth magnet, the material forms tetragonally shaped dipoles, and each 
dipole has 6 neighbors. Therefore, we can use (18) to find the saturation magnetization 
                 0    0         
Additionally, the Curie temperature of neodymium magnets has be well established as  
              
From this we can predict what the magnetization should be in the neodymium magnet as a function of 
temperature. From here we can calculate the magnetic field strength knowing that 
       (27) 
Where   is the magnetic scalar potential. From the flux continuity law, we know that 
          (28) 
If we integrate both sides of the flux continuity law over an incremental volume, we find that 
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where   is the permeability of free space and not to be confused with   , the magnetic dipole moment. 
    and     denote the magnetic fields on the top and bottom of the object while    and    denote 
the magnetization on the top and bottom surfaces of the object. We use the right hand side of (28) and 
(29) to define   , the magnetic charge density, and   , the magnetic surface charge density.  
                   ( 

    )  
Where  ⃑  is the normal vector of the surface being looked at and (     )  refers to the upper and 
lower surfaces, respectively. We then take the divergence of (27) to find that  
       (   )       (30) 
Again, from the flux continuity law, it follows that   must follow Poisson’s equation, so 
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(31) 

Suppose we have a cylindrically shaped magnet, which has a uniform magnetization throughout it, so 
        . Then the divergence of the magnetic volume charge density is zero, so the first integral of 
the right hand side of (29) is zero. We find that  
           0        ( 

    )         
We could from here find the solution to (31) over all space, but to make things simpler, we will orient 
our coordinate system such that the direction of magnetization in the material is along the z axis only, 
and then find the magnetic scalar potential along the z axis. (31) becomes a superposition integral as we 
integrate over the top and bottom surfaces of the magnet. Note that, since the sides of the cylinder are 
parallel to the z axis, they make no contribution to the field along the z axis.  
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We then take the gradient of this, and find  ⃑⃑  in (27) 
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(30) 

We can plug in the values for    that we found using (26) to predict how the magnetic field strength of a 

magnet should change as a function of temperature for a cylindrically shaped magnet with R= 7/8 in (1.11 cm) and 
d= 1/4 in (0.635 cm). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Appendix IV- Experimental Data and Analysis 
 
A selected sample of the observed magnetic flux density is shown in Table 1 below, with the 
sample data plotted in figure 8. 

  
using 16.81687x+0.228906 

Temp (K) Voltage (V) Bz (G) 

77.153393 0.740379 12.67976339 

87.154098 0.742568 12.71657552 

97.776867 0.743498 12.73221521 

107.555447 0.745772 12.77045677 

118.862619 0.746888 12.7892244 

127.87265 0.751015 12.85862762 

137.468743 0.773553 13.23764624 

147.951575 0.799409 13.67246323 

157.881295 0.805553 13.77578608 

167.889339 0.804523 13.7584647 

177.872436 0.801691 13.71083933 

187.804135 0.7979 13.64708657 

197.310836 0.792743 13.56036197 

207.903393 0.786091 13.44849616 

217.999629 0.77974 13.34169221 

227.897274 0.775191 13.26519227 

237.861586 0.77027 13.18243645 

247.960983 0.761336 13.03219454 

257.970111 0.753068 12.89315266 

267.982672 0.747267 12.79559799 

277.979582 0.739392 12.66316514 

281.918716 0.736967 12.62238423 

Table 1 Sample data taken from a typical test with voltages and the calculated magnetic flux density in the second and 

third columns respectively. At the top right is seen the calibrated function used to convert voltages from the Hall Effect 

probe into Gauss. 

 
Figure 8 A plot of the magnetic flux density as a function of temperature of Table 1. 



Error was propagated through the system in the form of errors in measurement of the distance of the 
Hall Effect probe from the magnet, the accuracies of the National Instruments 9213 and 9219 modules 
and the T- type thermocouple and Hall Effect probe itself. There is found to be a 4.12% error in 
measurement, and the sample data of table 1 is plotted in figure 9 with error bars to account for the 
error in measurement. 
 
 

 
Figure 9 The sample data of table 1 with 4.12% error. 

To make the mean field approximation, after the temperature dependence of the 

magnetization of a single dipole is calculated, this magnetization is multiplied by the total 

number of dipoles. To calculate the total number of dipoles, the disc shaped magnet is weighed 

several times to find a mass of 36.3027g. Knowing that the molecular unit weight of a single 

Nd2Fe14B magnet is 1076.921g/mol, the number of moles in the magnet is calculated. 

Multiplying by Avogadro’s number yields the total number of dipoles in the system. Multiplying 

by the magnetization of a single crystal, the magnetization in the system as a whole is calculated. 

The theoretical magnetization in the disc magnet calculated using this method is depicted in 

figure 8. The magnetizations produced from figure 10 are then used in equation (30) to calculate 

the magnetic field intensity at some distance away from the magnet. 

 

 
Figure 10 The calculated magnetization in the disc magnet as a function of temperature. Notice the values are quite large, 

but they yield reasonable results when used to calculate the magnetic field intensity. 



After calculating the magnetic field intensity from the magnetizations of figure 8, the 

theoretical curve produced for the magnetic field intensity or magnetic flux density can be 

compared to the observed field.       
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