Conifer Forest, Southwestern Colorado C. S. Kvien and J. E. Korb

Introduction

- There is a general consensus that climate change in the southwestern United States will result in the region becoming warmer and drier throughout the 21st century (Darmenova, 2013).
- Studies suggest more aggressive thinning treatments may increase fire resistance and provide greater resilience to future climate-related stress (Kerhoulas, 2013).
- For this study, we focused on a warm, dry mixed conifer forest stand in southwestern Colorado.
- Forest restoration treatments may be beneficial for pollinator-plant relationships by altering understory vegetation and habitat (Nyoka, 2010).
- Pollinators of most forest systems are dominated by a mixture of bee species (order Hymenoptera). Flies (order Diptera) are the second largest pollinating group (Larson, 2001).
- Overstory thinning and prescribed burning have the potential to substantially increase habitat suitability for pollinating insect taxa in ponderosa pine forests of the American Southwest (Nyoka, 2010).

Hypotheses:

- Pollinator richness/abundance will be significantly higher in the thin/burn treatment areas with higher richness in bees.
- Control and burn only treatments will have relatively similar pollinator richness/abundance with higher numbers of pollinator generalists (order Diptera).

Objectives

- 1. Compare richness/abundance of pollinators in three forest restoration treatments (control, thin/burn, and burn only) in warm, dry mixed conifer in southwestern Colorado.
- 2. Quantify if there are differences in pollinator communities among the three restoration treatments and if there were indicator species that were uniquely associated with restoration treatments.
- 3. Observe temporal changes in pollinators across the growing season.

Figure 1. Topographical map of the study site, located in the San Juan Mountains of southwest Colorado, (N 37.296, W 107.228) in the San Juan National Forest, NW of Pagosa Springs, CO.

Study Site

Figure 2. Satellite view of study site location within

Table 1: Mean (± SEM) forest stand characteristics by treatment. N=4. Different letters indicate significance at ≤ 0.05 using one-way ANOVA. Data from Stoddard et al. 2015.

- 0	5					
	2009 Tree	2013 Tree	2013 Tree	2013 Seedling	2013 Sapling ha ⁻¹	2015 Shru
	Canopy (%	Basal Area	Density (trees	ha ⁻¹ (<40 cm	(>40.1 cm height	Density (st
	Cover)	$(m^2 ha^{-1})$	ha ⁻¹)	height)	and >2.5 cm DBH)	ha ⁻¹)
	49.06 (1.8) a	26.8 (1.3) a	540.6 (49.8) a	276.3 (51.2) a	911.3 (246.5) a	17807
Control			, , , , , , , , , , , , , , , , , , ,	, , ,		(1659
	30.78 (1.8) b	11.3 (1.2) b	117.2 (34.5) b	87.5 (36.0) b	2982.5 (817.6) a	42721
Thin/Burn						(13774.)
		20.5(0.7) c	3166(20.9) c	253 8 (53 9) ah	983 8 (520 5) a	26400
Burn Only	40.31 (0.6) c	20.3 (0.7) C	510.0 (20.7) C	255.0 (55.7) ab)05.0 (520.5) a	(5486.0

Apidae

Megachiliadae

Halictidae

Sphecidae Figure 9: The four most abundant Hymenoptera families (left) and the two most abundant Diptera families (right) found at the study site.

	Indicator	
-	Value	P
ıly	47.2	0.0002
ıly	44.6	0.0002
ıly	26.1	0.0002
ıly	24.3	0.001
ıly	12.6	0.0148
August	41.2	0.0354
August	35.9	0.0956
August	35.6	0.0044
August	15.4	0.068
August	5.3	0.0602
ugust	7.6	0.0746

	Treatment	Indicator Value	Р
Syrphidae	control	30.4	0.0938
Halictidae	thin/burn	42.4	0.002
Tachinidae	thin/burn	30.6	0.0282
Bombyliidae	thin/burn	14.5	0.0836
Pompilidae	thin/burn	7.7	0.0562
Buprestidae	thin/burn	7.4	0.0752
Erotylidae	burn only	23.7	0.0284

units, and my fellow researchers for setting up plots and transects.